Cont08 01

Contrôle Terminale ES2 Exercice 1 La courbe ci-dessous est la courbe représentative notée Cf d’une fonction f définie sur C]. Les droites D et C] sont les asymptotes à Cf respectivement en et À partir du graphique et des renseignements fournis : Donner une équation des droites Cl et D. Quelles sont les limites de f en et en ? Quelle est la limite en de f(x) + x -2 ? Exercice 2 La courbe (Cu), ci-des us fonction u définie su que or 3 n graphique d’une normé du plan, telle À partir du graphique et des renseignements fournis • Déterminer et .

Soit f la fonction définie sur par Déterminer, en justifiant avec soin, et. Exercice 3 Solt la fonction définie sur Of – ru 1} et sa courbe représentative dans un repère orthonormal. 1) Déterminer les limites de aux bornes de En déduire d’éventuelles asymptotes horizontale ou verticale à . 2) Vérifier que peut s’écrire sous la forme : six 2 1, f(x) = -x +4 + . Déduire de cette écriture l’existence d’une asymptote oblique en 3) Etudier la position relative de par rapp rapport à son asymptote oblique. 4) Tracer les asymptotes à C dans un repère orthonormé d’unités ,5 cm, puis tracer C.

Exercice 4 Soit f la fonction définie sur par . On note Cfsa courbe représentative dans un repère. 1) Étudier la limite de fen et en . 2) On note la dérivée de la fonction f. a) Calculer . b) Étudier le signe de. c) Dresser le tableau des variations de f. (Faire figurer les limites obtenues, ainsi que les valeurs arrondies au dixième des extremums de f obtenues à l’aide de la calculatrice. ) 3) a) Montrer que l’équation f(x) = 7, admet une solution unique b) Donner, à l’aide de la calculatrice, une valeur arrondie de u centième près.

Exercice 5 En 1800, l’Angleterre comptait 8 millions d’habitants. L’économiste anglais Malthus avait émis l’hypothèse suivante: Cl La population de l’Angleterre suit une progression géométrique en augmentation de 2% par an. Cl En 1 800, l’agriculture anglaise permet de nourrir 10 millions d’habitants et son amélioration permet de nourrir 500 000 habitants supplémentaires par an, suivant une progression arithmétique. nb : Le terme « progression » était autrefois employé à la place du mot actuel de « suite ».

Afin de modéliser l’hypothèse était autrefois employé à la place du mot actuel de « suite’ . Afin de modéliser l’hypothèse de Malthus, nous numéroterons les années successives en prenant comme rang O l’année 1800. Nous noterons pn la population de l’Angleterre et an la popu ation que l’agriculture anglaise peut nourrir en l’an 1800 + n. Ainsi, nous avons po = 8 000 000 et = 10 000 000. l) calculer Pl , pz et P3 . Pour tout entier naturel n, donner la formule de récurrence exprimant le passage de pn à pn + 1 ainsi que la formule xprimant pn en fonction de n. ) Calculer al, a2 et a3 exprimant le passage de an à an + 1 ainsi que la formule exprimant an en fonction de n. 3) Calculer, selon l’hypothèse de Malthus, la population de l’Angleterre en 1900 ainsi que le nombre de personnes que peut nourrir l’agriculture anglaise en 1900. 4) Déterminer, selon l’hypothèse de Malthus, l’année à partir de laquelle l’agriculture anglaise ne permet plus de nourrir la population anglaise. Qu’en pensez-vous ? Exercice 6 Donner la définition d’une fonction continue sur un intervalle.